Domain datajunkie.de kaufen?

Produkte zum Begriff Mustererkennung:


  • Fischer-Stabel, Peter: Datenvisualisierung
    Fischer-Stabel, Peter: Datenvisualisierung

    Datenvisualisierung , Techniken der Datenvisualisierung werden mittler weile in allen Disziplinen eingesetzt. In der vorliegenden Publikation werden wesentliche Felder der Computervisualistik präsentiert und durch Anwendungsbeispiele illustriert: Das Spektrum reicht von elementaren Methoden zur Erstellung von Diagrammen, Infografiken und Kartenwerken, über geometrische Modellierung und Bildbearbeitung, bis hin zur Augmented- und Virtual Reality. Das Buch vermittelt so die Grundlagen der computergestützten Datenvisualisierung. Es ist für Studierende aller Studiengänge geeignet, die sich in das hochdynamische Feld der grafischen Datenverarbeitung einarbeiten und praxisrelevante Visualisierungstechniken erlangen möchten. , Bücher > Bücher & Zeitschriften

    Preis: 29.90 € | Versand*: 0 €
  • Datenvisualisierung mit Tableau (Loth, Alexander)
    Datenvisualisierung mit Tableau (Loth, Alexander)

    Datenvisualisierung mit Tableau , Visuelle Datenanalyse leicht gemacht: Von den ersten Balkendiagrammen über Cluster und Trendlinien bis zu geografischen Analysen auf Landkarten Erhalten Sie aussagefähige Prognosen durch vorausschauende Zukunftsanalysen Erstellen und teilen Sie interaktive Dashboards und übersichtliche Infografiken Alexander Loth zeigt Ihnen in diesem Buch, wie Sie Ihre Daten ganz einfach visuell darstellen und analysieren. So können Sie selbst komplexe Datenstrukturen besser verstehen und daraus gewonnene Erkenntnisse effektiv kommunizieren. Der Autor erläutert Schritt für Schritt die grundlegenden Funktionen von Tableau. Anhand von Fallbeispielen lernen Sie praxisnah, welche Visualisierungsmöglichkeiten wann sinnvoll sind. Ferner zeigt er Anwendungen, die weit über gängige Standardanalysen hinausreichen, und geht auf Funktionen ein, die selbst erfahrenen Nutzern oft nicht hinlänglich bekannt sind. Sie erhalten außerdem zahlreiche Hinweise und Tipps, die Ihnen das Arbeiten mit Tableau merklich erleichtern. So können Sie zukünftig Ihre eigenen Daten bestmöglich visualisieren und analysieren. Das Buch richtet sich an: alle, die Zugang zu Daten haben und diese verstehen möchten, Führungskräfte, die Entscheidungen auf der Grundlage von Daten treffen, Analysten und Entwickler, die Visualisierungen und Dashboards erstellen, angehende Data Scientists Sie brauchen weder Tableau-Kenntnisse noch besondere mathematische Fähigkeiten oder Programmiererfahrung, um mit diesem Buch effektiv arbeiten zu können. Es eignet sich daher auch für Einsteiger und Anwender, die sich dem Thema Datenvisualisierung und -analyse praxisbezogen nähern möchten. Aus dem Inhalt: Einführung und erste Schritte in Tableau Datenquellen in Tableau anlegen Visualisierungen erstellen Aggregationen, Berechnungen und Parameter Tabellenberechnungen und Detailgenauigkeitsausdrücke Mit Karten zu weitreichenden Erkenntnissen Tiefgehende Analysen mit Trends, Prognosen, Clustern und Verteilungen Interaktive Dashboards Teilen Sie Ihre Analysen mit Ihrem Unternehmen oder der ganzen Welt Daten integrieren und vorbereiten mit Tableau Prep Builder Zur Neuauflage Die zweite Auflage wurde erheblich überarbeitet und erweitert. Sie enthält zusätzliche Unterkapitel (z.B. zum neuen Datenmodell mit logischer und physischer Ebene, zu Schaltflächen, Dashboard Starter und zu fortgeschrittenen Strategien zur Datenakquisition) sowie viele Erweiterungen, Tipps und Aktualisierungen. Viele Kapitel schließen nun zudem mit vertiefenden Links zu häufig gestellten Fragen ab. Die zugrunde liegende Version von Tableau Desktop ist 2021.2.  , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 2. Auflage, Erscheinungsjahr: 20210723, Produktform: Kartoniert, Titel der Reihe: mitp Professional##, Autoren: Loth, Alexander, Edition: REV, Auflage: 21002, Auflage/Ausgabe: 2. Auflage, Seitenzahl/Blattzahl: 271, Keyword: analyse; big data analyse; big data; Bi; buch; business intelligence; clustering; dashboard; daten visualisieren; design; diagramme; infografik; mitp; reproting; tabellen; visualisierung, Fachschema: Analyse / Datenanalyse~Datenanalyse~Visualisierung - Prozessvisualisierung~Informationsverarbeitung (EDV), Warengruppe: HC/Informatik, Fachkategorie: Informationsvisualisierung, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: MITP Verlags GmbH, Verlag: MITP Verlags GmbH, Verlag: mitp Verlags GmbH & Co.KG, Länge: 238, Breite: 167, Höhe: 16, Gewicht: 470, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger EAN: 9783958457850, eBook EAN: 9783747503904 9783747503911, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0014, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 1791549

    Preis: 29.99 € | Versand*: 0 €
  • Datenanalyse mit Python (McKinney, Wes)
    Datenanalyse mit Python (McKinney, Wes)

    Datenanalyse mit Python , Die erste Adresse für die Analyse von Daten mit Python Das Standardwerk in der 3. Auflage, aktualisiert auf Python 3.10 und pandas 1.4 Versorgt Sie mit allen praktischen Details und mit wertvollem Insiderwissen, um Datenanalysen mit Python erfolgreich durchzuführen Mit Jupyter-Notebooks für alle Codebeispiele aus jedem Kapitel Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.10 und pandas 1.4, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy und Jupyter kennen. Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und Zusatzmaterial zum Buch sind auf GitHub verfügbar. Aus dem Inhalt: Nutzen Sie Jupyter Notebook und die IPython-Shell für das explorative Computing Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen Setzen Sie die Datenanalyse-Tools der pandas-Bibliothek ein Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten Erstellen Sie interformative Visualisierungen mit matplotlib Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätze zurechtzuschneiden, umzugestalten und zusammenzufassen Analysieren und manipulieren Sie verschiedenste Zeitreihendaten Erproben Sie die konkrete Anwendung der im Buch vorgestellten Werkzeuge anhand verschiedener realer Datensätze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, Erscheinungsjahr: 20230302, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: McKinney, Wes, Übersetzung: Lichtenberg, Kathrin~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, Seitenzahl/Blattzahl: 556, Keyword: Big Data; Data Mining; Data Science; IPython; Jupyter; Jupyter notebook; NumPy; Python 3.10; matplotlib; pandas 1.4, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Datenverarbeitung / Simulation~Informatik~Informationsverarbeitung (EDV)~Internet / Programmierung~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 241, Breite: 168, Höhe: 35, Gewicht: 999, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2660049, Vorgänger EAN: 9783960090809 9783960090007 9783864903038 9783958750739, andere Sprache: 9781491957660, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0120, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 44.90 € | Versand*: 0 €
  • Fahrmeir, Ludwig: Statistik
    Fahrmeir, Ludwig: Statistik

    Statistik , Dieses Lehrbuch liefert eine umfassende Darstellung der deskriptiven und induktiven Statistik sowie moderner Methoden der explorativen Datenanalyse. Dabei stehen inhaltliche Motivation, Interpretation und Verständnis der Methoden im Vordergrund. Unterstützt werden diese durch zahlreiche Grafiken und Anwendungsbeispiele, die auf realen Daten basieren, sowie passende exemplarische R -Codes und Datensätze. Die im Buch beschriebenen Ergebnisse können außerdem anhand der online zur Verfügung stehenden Materialien reproduziert sowie um eigene Analysen ergänzt werden. Eine kurze Einführung in die freie Programmiersprache R ist ebenfalls enthalten. Hervorhebungen erhöhen die Lesbarkeit und Übersichtlichkeit. Das Buch eignet sich als vorlesungsbegleitende Lektüre, aber auch zum Selbststudium. Für die 9. Auflage wurde das Buch inhaltlich überarbeitet und ergänzt. Leserinnen und Leser erhalten nun in der Springer-Nature-Flashcards-App zusätzlich kostenfreien Zugriff auf über 100 exklusive Lernfragen, mit denen sie ihr Wissen überprüfen können. Die Autorinnen und Autoren Prof. Dr. Ludwig Fahrmeir  war Professor für Statistik an der Universität Regensburg und der LMU München. Prof. Dr. Christian Heumann  ist Professor am Institut für Statistik der LMU München. Dr. Rita Künstler  war wissenschaftliche Mitarbeiterin am Institut für Statistik der LMU München. Prof. Dr. Iris Pigeot  ist Professorin an der Universität Bremen und Direktorin des Leibniz-Instituts für Präventionsforschung und Epidemiologie - BIPS. Prof. Dr. Gerhard Tutz  war Professor für Statistik an der TU Berlin und der LMU München. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 49.99 € | Versand*: 0 €
  • Wie können Algorithmen zur Mustererkennung in der Datenanalyse und im maschinellen Lernen eingesetzt werden?

    Algorithmen zur Mustererkennung können verwendet werden, um komplexe Datenmuster zu identifizieren und Vorhersagen zu treffen. Sie können in der Datenanalyse eingesetzt werden, um Trends, Anomalien und Zusammenhänge in den Daten zu erkennen. Im maschinellen Lernen können Algorithmen zur Mustererkennung verwendet werden, um Modelle zu trainieren, die automatisch Muster in den Daten erkennen und darauf basierend Entscheidungen treffen können.

  • Versteht jemand von euch Mustererkennung bei Matrizentests?

    Ja, ich verstehe Mustererkennung bei Matrizentests. Mustererkennung bezieht sich auf die Fähigkeit, wiederkehrende Muster oder Strukturen in einer Matrix zu identifizieren und zu interpretieren. Dies kann beispielsweise bei der Analyse von Daten oder der Lösung von mathematischen Problemen hilfreich sein.

  • Wie kann man Datenanalyse und Datenmanagement studieren?

    Um Datenanalyse und Datenmanagement zu studieren, gibt es verschiedene Möglichkeiten. Man kann ein Studium der Informatik oder Wirtschaftsinformatik mit Schwerpunkt auf Datenanalyse und Datenmanagement absolvieren. Es gibt auch spezielle Studiengänge wie Data Science oder Business Analytics, die sich auf diese Themen konzentrieren. Zusätzlich kann man sich auch durch Weiterbildungen und Zertifizierungen in diesem Bereich fortbilden.

  • Wie werden Algorithmen zur Mustererkennung in der Technologie eingesetzt?

    Algorithmen zur Mustererkennung werden in der Technologie eingesetzt, um Daten zu analysieren und Muster oder Trends zu identifizieren. Sie werden beispielsweise in der Gesichtserkennung, Spracherkennung oder bei der automatischen Bilderkennung verwendet. Diese Algorithmen ermöglichen es, große Datenmengen effizient zu verarbeiten und nützliche Informationen daraus zu gewinnen.

Ähnliche Suchbegriffe für Mustererkennung:


  • Statistik unterrichten (Riemer, Wolfgang)
    Statistik unterrichten (Riemer, Wolfgang)

    Statistik unterrichten , Ein innovativer Stochastikunterricht mit authentischen Fallbeispielen Ein Stochastikunterricht nach klassischem Muster ist linear aufgebaut: zuerst beschreibende Statistik, dann Wahrscheinlichkeitsrechnung, zum Abschluss beurteilende Statistik. Ein solcher Aufbau strebt nach formaler Exaktheit und Systematik. Aber verkennt er nicht die Neugierde und den Lebensweltbezug der Schüler:innen als treibende Kraft des Lernens? Statistik unterrichten ist eine erfrischend innovative Didaktik der Stochastik. Funktionierende Schulpraxis steht im Vordergrund, solide reflektierte Theorie dahinter. Auf der Grundlage eines umfassenden Wahrscheinlichkeitsbegriffs werden beschreibende Statistik, Wahrscheinlichkeitsrechnung und Kerngedanken beurteilender Statistik von Anfang an spiralcurricular miteinander vernetzt. Dies gelingt - handlungsorientiert - durch spannende und schulalltagstaugliche Fallbeispiele, in deren Zentrum Kinder und Jugendliche mit ihren Alltagsintuitionen und ihrem Interesse an realistischen Fragen stehen. Ziel ist ein nachhaltiger, kognitiv aktivierender Unterricht: Begriffe werden über konkrete Inhalte gebildet, als sinnstiftend erlebt und Zusammenhänge entdeckt. Ohne großen organisatorischen Aufwand lassen sich alle Experimente in einer Schulstunde ?vor Ort? realisieren. Das Buch ist modular aufgebaut, Kapitel lassen sich unabhängig voneinander lesen und werden durch wenige Paradigmen zusammengehalten: Pflege einen passenden Wahrscheinlichkeitsbegriff. Trenne Modell und Realität messerscharf und konsequent. Untersuche Zufallsschwankungen statt sie wegzuwünschen. Stelle authentische Probleme ins Zentrum. Nutze den ?didaktischen Dreisatz? Spekulieren-Experimentieren-Reflektieren. Der Band richtet sich an Referendarinnen und Referendare sowie Mathematik-Lehrkräfte beider Sekundarstufen, die spannende und erkenntnisreiche Unterrichtsstunden gestalten möchten, an die sich die Schüler:innen auch lange nach der Schulzeit mit Vergnügen erinnern. , Schule & Ausbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20231107, Produktform: Kartoniert, Autoren: Riemer, Wolfgang, Seitenzahl/Blattzahl: 144, Keyword: Beurteilende Statistik; Experimentieren; Glücksrad auf der schiefen Ebene; Grundvorstellungen; Hypothesen; Konfidenzintervall; Normalverteilung; Problemlösen; Riemerwürfel; Signifikanztest; Stochastik; Testgrößen; Wahrscheinlichkeit; kognitive Aktivierung, Fachschema: Mathematik / Didaktik, Methodik~Statistik~Pädagogik / Schule, Fachkategorie: Schule und Lernen, Bildungszweck: für die Sekundarstufe I~Für die Sekundarstufe, Warengruppe: HC/Didaktik/Methodik/Schulpädagogik/Fachdidaktik, Fachkategorie: Schulen, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Kallmeyer'sche Verlags-, Verlag: Kallmeyer'sche Verlags-, Verlag: Kallmeyer'sche Verlagsbuchhandlung, Länge: 225, Breite: 158, Höhe: 11, Gewicht: 354, Produktform: Kartoniert, Genre: Sozialwissenschaften/Recht/Wirtschaft, Genre: Sozialwissenschaften/Recht/Wirtschaft, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0250, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 29.95 € | Versand*: 0 €
  • Behr, Andreas: Grundwissen Induktive Statistik
    Behr, Andreas: Grundwissen Induktive Statistik

    Grundwissen Induktive Statistik , Die Induktive Statistik bietet in der Praxis zahlreiche Anwendungsmöglichkeiten, u. a. Schätzfunktionen, Hypothesentests und Stichproben aus realen Gesamtheiten. Auf kompakte Art und Weise stellt diese 2., überarbeitete und erweiterte Auflage die Grundkenntnisse der Induktiven Statistik vor: Sie vermittelt die relevanten Begriffe, Methoden und Probleme. Zudem zeigt der Band auf, in welchem Kontext die Induktive Statistik in den Wirtschafts- und Sozialwissenschaften Anwendung findet. Ein Formelteil, Aufgaben mit Lösungen sowie neue Musterklausuren helfen dabei, das Gelernte schnell zu vertiefen. Kurzum: Der ideale Einstieg in das Thema für Studierende der Wirtschafts- und Sozialwissenschaften. , Bücher > Bücher & Zeitschriften

    Preis: 24.90 € | Versand*: 0 €
  • Schuldenzucker, Ulrike: Prüfungstraining Deskriptive Statistik
    Schuldenzucker, Ulrike: Prüfungstraining Deskriptive Statistik

    Prüfungstraining Deskriptive Statistik , Alle notwendigen Grundlagen der deskriptiven Statistik für Wirtschaftswissenschaftler:innen: Statistische Einheiten, Messbarkeitseigenschaften, Eindimensionale Datenreihen, Verteilungsfunktionen, Lageparameter und Streuungsmaße, Zweidimensionale Datenreihen, Korrelations- und Regressionsrechnung, Zeitreihenanalyse, Konzentrationsmessung, Verhältnis- und Indexzahlen. Didaktisch durchdacht und an den Prüfungsanforderungen ausgerichtet, lassen sich die individuell benötigten Lernbausteine auswählen. Dazu gehören: Repetitorium des prüfungsrelevanten Stoffes Anwendungsaufgaben zu jedem Thema plus Lösungen Musterklausuren inklusive ausführlicher Lösungen Formelsammlung Ideal für die Prüfungsvorbereitung und zur schnellen Wiederholung mathematischer Themen in höheren Semestern. , Bücher > Bücher & Zeitschriften

    Preis: 29.99 € | Versand*: 0 €
  • Grundwissen Deskriptive Statistik (Behr, Andreas)
    Grundwissen Deskriptive Statistik (Behr, Andreas)

    Grundwissen Deskriptive Statistik , Mit R-Code! Kenntnisse der Deskriptiven Statistik gehören für Studierende der Wirtschafts- und Sozialwissenschaften zum wichtigen Handwerkszeug. Auf kompakte Art und Weise stellt diese 3., überarbeitete und erweiterte Auflage die relevanten Fachtermini vor und vermittelt das Wichtigste zur Verteilung, Kerndichteschätzung, zu Maßzahlen sowie zur Korrelations- und Regressionsrechnung. Auch auf Konzentrationsmessung sowie Preis- und Mengenindizes geht sie ein. Übungen mit Lösungen, neue Musterklausuren und ein Formelteil unterstützen das Lernen. Kurzum: Der ideale Einstieg in das Thema für Studierende der Wirtschafts- und Sozialwissenschaften. , Bücher > Bücher & Zeitschriften , Auflage: 3. überarbeitete und erweiterte Auflage, Erscheinungsjahr: 20230925, Produktform: Kartoniert, Autoren: Behr, Andreas, Edition: REV, Auflage: 23003, Auflage/Ausgabe: 3. überarbeitete und erweiterte Auflage, Seitenzahl/Blattzahl: 276, Abbildungen: 43 schwarz-weiße Abbildungen, Keyword: Bedingte Häufigkeiten; Berliner Verfahren; Betriebswirtschaftslehre; Census; Deskriptive Statistik; Empirie; Euklidische Norm; Formelsammlung; Hirschman-Herfindahl-Koeffizient; Histogramme; Häufigkeitsverteilung; Indexziffern; Indizes; Kerndichteschätzung; Kernfunktionen; Kettenindizes; Klausuren; Konzentrationsmessung; Korrelation; Lagemaße; Lehrbuch; Lorenzkurve; Lösungen; Maßzahlen; Mengenindex; Messziffernmittelung; Mischeffekt; Niveaueffekt; PSID; Politikwissenschaft; Preisindex; Prüfungen; R-Code; Regression; Regressionsrechnung; Rosenbluth-Koeffizient; Saisonbereinigung; Schiefemaße; Sozialwissenschaften; Soziologie; Stabdiagramme; Statistik; Statistikklausuren, Fachschema: Betriebswirtschaft - Betriebswirtschaftslehre~Makroökonomie~Ökonomik / Makroökonomik~Ökonometrie~Statistik / Deskriptive Statistik~Statistik / Wirtschaftsstatistik~Wirtschaftsstatistik, Fachkategorie: Betriebswirtschaftslehre, allgemein, Bildungszweck: für die Hochschule, Fachkategorie: Ökonometrie und Wirtschaftsstatistik, Thema: Verstehen, Text Sprache: ger, Originalsprache: ger, Verlag: UTB GmbH, Verlag: UTB, Produktverfügbarkeit: 02, Länge: 182, Breite: 119, Höhe: 19, Gewicht: 296, Produktform: Kartoniert, Genre: Sozialwissenschaften/Recht/Wirtschaft, Genre: Sozialwissenschaften/Recht/Wirtschaft, Vorgänger: 2001066, Vorgänger EAN: 9783825253219 9783825248253, eBook EAN: 9783838561752, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0025, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Lagerartikel, Unterkatalog: Taschenbuch, WolkenId: 1537540

    Preis: 24.90 € | Versand*: 0 €
  • Wie entsteht Big Data?

    Big Data entsteht durch die Sammlung und Speicherung einer großen Menge von Daten aus verschiedenen Quellen wie Sensoren, Social Media, Transaktionen und mehr. Diese Daten werden dann mithilfe von speziellen Tools und Technologien analysiert und verarbeitet, um Muster, Trends und Erkenntnisse zu identifizieren. Durch die kontinuierliche Erfassung und Analyse von Daten in Echtzeit können Unternehmen fundierte Entscheidungen treffen und ihre Geschäftsprozesse optimieren. Letztendlich ermöglicht Big Data eine tiefere Einblicke in das Verhalten von Kunden, Trends auf dem Markt und ermöglicht die Entwicklung innovativer Produkte und Dienstleistungen.

  • Wie funktioniert Big Data?

    Wie funktioniert Big Data?

  • Was ist Big Data?

    Big Data bezieht sich auf große Mengen an Daten, die mit hoher Geschwindigkeit und Vielfalt generiert werden. Diese Daten können aus verschiedenen Quellen stammen, wie zum Beispiel sozialen Medien, Sensoren oder Transaktionen. Big Data ermöglicht es Unternehmen, Muster und Trends zu identifizieren, um fundierte Entscheidungen zu treffen und ihre Geschäftsprozesse zu optimieren.

  • Was sind die Anwendungen von Mustererkennung in der modernen Technologie?

    Mustererkennung wird in der Gesichtserkennung für Sicherheitssysteme verwendet, um Personen zu identifizieren. In der Medizin wird sie eingesetzt, um Krankheiten frühzeitig zu erkennen. In der Automobilindustrie wird Mustererkennung genutzt, um autonomes Fahren zu ermöglichen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.